Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 808
1.
Chemosphere ; 357: 141912, 2024 Jun.
Article En | MEDLINE | ID: mdl-38582166

The efficiency of the Fenton reaction is markedly contingent upon the operational pH related to iron solubility. Therefore, a heterogeneous Fenton reaction has been developed to function at neutral pH. In the present study, the Bio-Fenton reaction was carried out using magnetite (Fe(II)Fe(III)2O4) and H2O2 generated by a newly isolated H2O2-producing bacterium, Desemzia sp. strain C1 at pH 6.8 to degrade chloroacetanilide herbicides. The optimal conditions for an efficient Bio-Fenton reaction were 10 mM of lactate, 0.5% (w/v) of magnetite, and resting-cells (O.D.600 = 1) of strain C1. During the Bio-Fenton reaction, 1.8-2.0 mM of H2O2 was generated by strain C1 and promptly consumed by the Fenton reaction with magnetite, maintaining stable pH conditions. Approximately, 40-50% of the herbicides underwent oxidation through non-specific reactions of •OH, leading to dealkylation, dechlorination, and hydroxylation via hydrogen atom abstraction. These findings will contribute to advancing the Bio-Fenton system for non-specific oxidative degradation of diverse organic pollutants under in-situ environmental conditions with bacteria producing high amount of H2O2 and magnetite under a neutral pH condition.


Acetamides , Biodegradation, Environmental , Ferrosoferric Oxide , Herbicides , Hydrogen Peroxide , Iron , Herbicides/metabolism , Herbicides/chemistry , Hydrogen Peroxide/metabolism , Ferrosoferric Oxide/metabolism , Ferrosoferric Oxide/chemistry , Iron/metabolism , Iron/chemistry , Acetamides/metabolism , Acetamides/chemistry , Oxidation-Reduction , Hydrogen-Ion Concentration
2.
Chem Biodivers ; 21(2): e202301292, 2024 Feb.
Article En | MEDLINE | ID: mdl-38117275

In this work, synthesis and evaluation of pyrazino[1,2-a]indole-1,4-dione-indole-2-phenylacetamides 6 a-k as new synthetic anti-diabetes agents were presented. These compounds were synthesized by a four-component Ugi reaction without metal catalyst. All synthesized compounds were evaluated against α-glucosidase and α-amylase as two important targets in the treatment of diabetes. Approximately, all new compounds 6 a-k were more potent than positive control acarbose against these studied enzymes. The obtained potent compounds against the target enzymes were docked in the active site of the related enzyme. Docking study showed that our new potent compounds as well interacted with key residues of the target enzyme.


Benzeneacetamides , Glycoside Hydrolase Inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Hypoglycemic Agents/chemistry , Indoles/pharmacology , Molecular Docking Simulation , Structure-Activity Relationship , Acetamides/chemistry , Acetamides/metabolism
3.
Eur J Med Chem ; 257: 115524, 2023 Sep 05.
Article En | MEDLINE | ID: mdl-37290183

Towards identification of novel therapeutic candidates, a series of quinazolinone-based acetamide derivatives were synthesized and assessed for their anti-leishmanial efficacy. Amongst synthesized derivatives, compounds F12, F27 and F30 demonstrated remarkable activity towards intracellular L. donovani amastigotes in vitro, with IC50 values of 5.76 ± 0.84 µM, 3.39 ± 0.85 µM and 8.26 ± 1.23 µM against promastigotes, and 6.02 µM ± 0.52, 3.55 ± 0.22 µM and 6.23 ± 0.13 µM against amastigotes, respectively. Oral administration of compounds F12 and F27 entailed >85% reduction in organ parasite burden in L. donovani-infected BALB/c mice and hamsters, by promoting host-protective Th1 cytokine response. In host J774 macrophages, mechanistic studies revealed inhibition of PI3K/Akt/CREB axis, resulting in a decrease of IL-10 versus IL-12 release upon F27 treatment. In silico docking studies conducted with lead compound, F27 demonstrated plausible inhibition of Leishmania prolyl-tRNA synthetase, which was validated via detection of decreased proline levels in parasites and induction of amino acid starvation, leading to G1 cell cycle arrest and autophagy-mediated programmed cell death of L. donovani promastigotes. Structure-activity analysis and study of pharmacokinetic and physicochemical parameters suggest oral availability and underscore F27 as a promising lead for anti-leishmanial drug development.


Antiprotozoal Agents , Leishmania donovani , Leishmaniasis, Visceral , Cricetinae , Animals , Mice , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/metabolism , Quinazolinones/pharmacology , Quinazolinones/therapeutic use , Quinazolinones/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Acetamides/pharmacology , Acetamides/therapeutic use , Acetamides/metabolism , Mice, Inbred BALB C
4.
Environ Pollut ; 331(Pt 1): 121878, 2023 Aug 15.
Article En | MEDLINE | ID: mdl-37236591

The lack of data on the chronic effects of chloroacetanilide herbicide metabolites on non-target aquatic organisms creates a gap in knowledge about the comprehensive impacts of excessive and repeated pesticide use. Therefore, this study evaluates the long-term effects of propachlor ethanolic sulfonic acid (PROP-ESA) after 10 (T1) and 20 (T2) days at the environmental level of 3.5 µg.L-1 (E1) and its 10x fold multiply 35 µg.L-1 (E2) on a model organism Mytilus galloprovincialis. To this end, the effects of PROP-ESA usually showed a time- and dose-dependent trend, especially in its amount in soft mussel tissue. The bioconcentration factor increased from T1 to T2 in both exposure groups - from 2.12 to 5.30 in E1 and 2.32 to 5.48 in E2. Biochemical haemolymph profile and haemocyte viability were not affected by PROP-ESA exposure. In addition, the viability of digestive gland (DG) cells decreased only in E2 compared to control and E1 after T1. Moreover, malondialdehyde levels increased in E2 after T1 in gills, and DG, superoxidase dismutase activity and oxidatively modified proteins were not affected by PROP-ESA. Histopathological observation showed several damages to gills (e.g., increased vacuolation, over-production of mucus, loss of cilia) and DG (e.g., growing haemocyte trend infiltrations, alterations of tubules). This study revealed a potential risk of chloroacetanilide herbicide, propachlor, via its primary metabolite in the Bivalve bioindicator species M. galloprovincialis. Furthermore, considering the possibility of the biomagnification effect, the most prominent threat poses the ability of PROP-ESA to be accumulated in edible mussel tissues. Therefore, future research about the toxicity of pesticide metabolites alone or their mixtures is needed to gain comprehensive results about their impacts on living non-target organisms.


Herbicides , Mytilus , Water Pollutants, Chemical , Animals , Mytilus/metabolism , Herbicides/metabolism , Acetamides/toxicity , Acetamides/metabolism , Gills/metabolism , Water Pollutants, Chemical/metabolism
5.
Brain ; 146(6): 2399-2417, 2023 06 01.
Article En | MEDLINE | ID: mdl-36448426

Memory deficits are a debilitating symptom of epilepsy, but little is known about mechanisms underlying cognitive deficits. Here, we describe a Na+ channel-dependent mechanism underlying altered hippocampal dendritic integration, degraded place coding and deficits in spatial memory. Two-photon glutamate uncaging experiments revealed a marked increase in the fraction of hippocampal first-order CA1 pyramidal cell dendrites capable of generating dendritic spikes in the kainate model of chronic epilepsy. Moreover, in epileptic mice dendritic spikes were generated with lower input synchrony, and with a lower threshold. The Nav1.3/1.1 selective Na+ channel blocker ICA-121431 reversed dendritic hyperexcitability in epileptic mice, while the Nav1.2/1.6 preferring anticonvulsant S-Lic did not. We used in vivo two-photon imaging to determine if aberrant dendritic excitability is associated with altered place-related firing of CA1 neurons. We show that ICA-121431 improves degraded hippocampal spatial representations in epileptic mice. Finally, behavioural experiments show that reversing aberrant dendritic excitability with ICA-121431 reverses hippocampal memory deficits. Thus, a dendritic channelopathy may underlie cognitive deficits in epilepsy and targeting it pharmacologically may constitute a new avenue to enhance cognition.


Dendrites , Epilepsy , Mice , Animals , Dendrites/physiology , Hippocampus/physiology , Acetamides/metabolism , Pyramidal Cells/metabolism , Epilepsy/metabolism , Action Potentials/physiology
6.
Environ Toxicol Pharmacol ; 96: 104008, 2022 Nov.
Article En | MEDLINE | ID: mdl-36341964

The metabolism and toxicity of current-use herbicide safeners remain understudied. We investigated the enantioselective metabolism of the safener benoxacor in Rhesus monkey subcellular fractions. Benoxacor was incubated with liver microsomes and cytosol from female and male monkeys (≤30 min). Benoxacor levels and enantiomeric fractions were determined with gas chromatography. Benoxacor was metabolized by microsomal cytochrome P450 enzymes (CYPs), cytosolic glutathione-S-transferases (GSTs), and microsomal and cytosolic carboxylesterase (CESs). CES-mediated microsomal metabolism followed the order males > females, whereas the CYP-mediated clearance followed the order females > males. CYP-mediated metabolism initially resulted in an enrichment of the second eluting benoxacor enantiomer (E2-benoxacor), whereas the first eluting benoxacor enantiomer (E1-benoxacor) was enriched after 10 or 30 min in female or male microsomal incubations. Benoxacor metabolism by GSTs was enantiospecific, with a total depletion of E1-benoxacor after approximately 20 min. Thus, the enantioselective metabolism of benoxacor by GSTs and CYPs may affect its toxicity.


Acetamides , Microsomes, Liver , Male , Female , Animals , Microsomes, Liver/metabolism , Cytosol/metabolism , Acetamides/toxicity , Acetamides/chemistry , Acetamides/metabolism , Cytochrome P-450 Enzyme System/metabolism , Microsomes/metabolism
7.
Eur J Med Chem ; 242: 114639, 2022 Nov 15.
Article En | MEDLINE | ID: mdl-35973312

New chemical scaffolds with novel mechanism of action are urgently needed for the treatment of drug resistant tuberculosis. The oxidative phosphorylation pathway of Mycobacterium tuberculosis consists of multiple clinically validated drug targets. This pathway can function through any one of the two terminal oxidases-the proton pumping cytochrome bc1-aa3 supercomplex, or the less energy efficient but high affinity cytochrome bd oxidase. Inhibiting the bc1 complex alone has been found bacteriostatic and not bactericidal. On the other hand, inhibition of both these oxidases turns lethal to the pathogen. In the present study, we used a bc1 complex mutant of M. tuberculosis to screen (Quinazoline 4-yloxy)acetamide and (4-oxoquinazoline-3(4H)-yl)acetamide derivatives against the alternate oxidase, i.e., cytochrome bd oxidase. Two molecules, S-021-0601 and S-021-0607 were found to inhibit the mutant with MICs 8 and 16 µM respectively, compared to MICs of 128 and 256 µM against the wild type M. tuberculosis. In the wild type, one of the compounds showed synergism with Q203, an inhibitor of bc1 complex, in inhibiting growth under aerobic conditions. Both compounds showed synergism with Q203 in depleting bacterial ATP and inhibiting oxygen consumption. Both the compounds at 32 µM (one-fourth or one-eighth of their MICs for wild type) were bactericidal to wild type bacteria under hypoxic condition, causing ∼1.9 log10 reduction in viable counts which increased to ∼4-log10 when combined with Q203.


Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Acetamides/metabolism , Acetamides/pharmacology , Adenosine Triphosphate/metabolism , Amides/metabolism , Cytochromes/metabolism , Electron Transport Complex IV/metabolism , Humans , Mycobacterium tuberculosis/metabolism , Oxidoreductases/metabolism , Protons , Quinazolines/metabolism , Quinazolines/pharmacology
8.
Nucl Med Biol ; 108-109: 76-84, 2022.
Article En | MEDLINE | ID: mdl-35349913

INTRODUCTION: 11C-DPA-713 is a positron emission tomography (PET) radiotracer developed for imaging the expression of the translocator protein (TSPO) in glial cells, which is considered to be a marker of the neuroinflammatory burden. This study investigated the pharmacokinetic profile of 11C-DPA-713 and evaluated kinetic modeling and non-invasive TSPO quantification using dynamic PET imaging data in the Alzheimer's disease (AD) and cognitive normal (CN) participants. METHODS: Eleven patients with AD and 6 CN participants were examined using dynamic 11C-DPA-713 PET imaging for 60 min with arterial blood sampling. Time-activity curves were calculated from the cerebellum and three composite regions of interest (ROIs), according to the anatomical definitions of Braak's stages 1 to 3, stage 4, stage 5, and stage 6 that correspond to the pathological stages of tangle deposition. The total distribution volume (VT) was evaluated using compartmental modeling and graphical analysis. Reference region-based methods were implemented using an optimal area that was assumed to be void of the radiotracer target as reference tissue. RESULTS: The concentration of radioactivity in plasma demonstrated rapid clearance. 11C-DPA-713 peaked rapidly in the gray matter. Compartmental modeling resulted in a good fit, and the one-tissue model with estimated blood volume correction (1Tv) showed the best performance. The estimated VT obtained from the graphical plasma methods was highly correlated with that obtained from 1Tv. Reference region-based analysis was conducted using the Braak 6 area as the reference region, and the estimated non-displaceable binding potential was highly correlated with that obtained from 1Tv. CONCLUSION: 11C-DPA-713 possesses properties suitable for TSPO quantification with PET imaging. The Braak 6 area was shown to be a useful reference region in the patients with AD and the CN participants, and non-invasive reference tissue models using the Braak 6 area as a reference region can be employed for TSPO quantification with 11C-DPA-713-PET imaging as an alternative to the invasive compartmental model.


Alzheimer Disease , Pyrazoles , Acetamides/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Brain/metabolism , Carrier Proteins/metabolism , Humans , Positron-Emission Tomography/methods , Pyrazoles/chemistry , Pyrimidines/chemistry , Receptors, GABA/metabolism
9.
Environ Res ; 209: 112859, 2022 06.
Article En | MEDLINE | ID: mdl-35114144

Chloroacetamide herbicides (CAAHs) are important herbicides that were widely used to control agricultural weeds. However, their mass applications have seriously contaminated environment, and they are toxic to living beings. CAAHs are easy to enter anoxic environments such as subsoil, wetland sediment, and groundwater, where CAAHs are mainly degraded by anaerobic organisms. To date, there are no research on the anaerobic degradation of CAAHs by pure isolate and toxicity of anaerobic metabolites of CAAHs. In this study, the anaerobic degradation kinetics and metabolites of CAAHs by an anaerobic isolate BAD-10T and the toxicity of anaerobic metabolites were studied. Isolate BAD-10T could degrade alachlor, acetochlor, propisochlor, butachlor, pretilachlor and metolachlor with the degradation kinetics fitting the pseudo-first-order kinetics equation. The degradation rates of CAAHs were significantly affected by the length of N-alkoxyalkyl groups, the shorter the N-alkoxyalkyl groups, the higher the degradation rates. Four metabolites 2-ethyl-6-methyl-N-(ethoxymethyl)-acetanilide (EMEMA), N-(2-methyl-6-ethylphenyl)-acetamide (MEPA), N-2-ethylphenyl acetamide and 2-ethyl-N-carboxyl aniline were identified during acetochlor degradation, and an anaerobic catabolic pathway of acetochlor was proposed. The toxicity of EMEMA and EMPA for zebrafish, Arabidopsis and Chlorella ellipsoidea were obviously lower than that of acetochlor, indicating that the anaerobic degradation of acetochlor by isolate BAD-10T is a detoxification process. The work reveals the anaerobic degradation kinetics and catabolic pathway of CAAHs and highlights a potential application of Proteiniclasticum sediminis BAD-10T for bioremediation of CAAHs residue-contaminated environment.


Chlorella , Herbicides , Acetamides/metabolism , Acetamides/toxicity , Anaerobiosis , Animals , Biodegradation, Environmental , Chlorella/metabolism , Herbicides/toxicity , Zebrafish/metabolism
10.
J Nucl Med ; 63(9): 1408-1414, 2022 09.
Article En | MEDLINE | ID: mdl-35115368

Studies on colony-stimulating factor 1 receptor (CSF-1R) inhibition-induced microglia depletion indicated that inhibitor withdrawal allowed the renewal of the microglia compartment via repopulation and resolved the inflammatory imbalance. Therefore, we investigated for the first time (to our knowledge) the effects of microglia repopulation on inflammation and functional outcomes in an ischemic mouse model using translocator protein (TSPO)-PET/CT and MR imaging, ex vivo characterization, and behavioral tests. Methods: Eight C57BL/6 mice per group underwent a 30-min transient occlusion of the middle cerebral artery. The treatment group received CSF-1R inhibitor in 1,200 ppm PLX5622 chow (Plexxikon Inc.) from days 3 to 7 to induce microglia/macrophage depletion and then went back to a control diet to allow repopulation. The mice underwent T2-weighted MRI on day 1 after ischemia and 18F-labeled N,N-diethyl-2-(2-[4-(2-fluoroethoxy)phenyl]-5,7-dimethylpyrazolo[1,5-α]pyrimidine-3-yl)acetamide (18F-DPA-714) (TSPO) PET/CT on days 7, 14, 21, and 30. The percentage injected tracer dose per milliliter within the infarct, contralateral striatum, and spleen was assessed. Behavioral tests were performed to assess motor function recovery. Brains were harvested on days 14 and 35 after ischemia for ex vivo analyses (immunoreactivity and real-time quantitative polymerase chain reaction) of microglia- and macrophage-related markers. Results: Repopulation significantly increased 18F-DPA-714 uptake within the infarct on days 14 (P < 0.001) and 21 (P = 0.002) after ischemia. On day 14, the ionized calcium binding adaptor molecule 1 (Iba-1)-positive cell population showed significantly higher expression of TSPO, CSF-1R, and CD68, in line with microglia repopulation. Gene expression analyses on day 14 indicated a significant increase in microglia-related markers (csf-1r, aif1, and p2ry12) with repopulation, whereas peripheral cell recruitment-related gene expression decreased (cx3cr1 and ccr2), indicative of peripheral recruitment during CSF-1R inhibition. Similarly, uncorrected spleen uptake was significantly higher on day 7 after ischemia with treatment (P = 0.001) and decreased after drug withdrawal. PLX5622-treated mice walked a longer distance (P < 0.001) and more quickly (P = 0.009), and showed greater forelimb strength (P < 0.001), than control mice on day 14. Conclusion: This study highlighted the potential of 18F-DPA-714 PET/CT imaging to track microglia and macrophage repopulation after short-term CSF-1R inhibition in stroke.


Fluorine Radioisotopes , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Stroke , Acetamides/metabolism , Animals , Calcium/metabolism , Carrier Proteins/metabolism , Fluorine Radioisotopes/metabolism , Infarction/metabolism , Macrophage Colony-Stimulating Factor/metabolism , Mice , Mice, Inbred C57BL , Microglia/metabolism , Organic Chemicals , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Pyrazoles , Pyrimidines/metabolism , Pyrimidines/pharmacology , Stroke/diagnostic imaging , Stroke/drug therapy , Stroke/metabolism
11.
J Nucl Med ; 63(9): 1386-1393, 2022 09.
Article En | MEDLINE | ID: mdl-35115369

Glioma-associated microglia and macrophages (GAMMs) are key players in creating an immunosuppressive microenvironment. They can be efficiently targeted by inhibiting the colony-stimulating factor 1 receptor (CSF-1R). We applied noninvasive PET/CT and PET/MRI using 18F-fluoroethyltyrosine (18F-FET) (amino acid metabolism) and N,N-diethyl-2-[4-(2-18F-fluoroethoxy)phenyl]-5,7-dimethylpyrazolo[1,5-a]pyrimidine-3-acetamide (18F-DPA-714) (translocator protein) to understand the role of GAMMs in glioma initiation, monitor in vivo therapy-induced GAMM depletion, and observe GAMM repopulation after drug withdrawal. Methods: C57BL/6 mice (n = 44) orthotopically implanted with syngeneic mouse GL261 glioma cells were treated with different regimens using the CSF-1R inhibitor PLX5622 (6-fluoro-N-((5-fluoro-2-methoxypyridin-3-yl)methyl)-5-((5-methyl-1H-pyrrolo[2,3-b]pyridin-3-yl)methyl)pyridin-2-amine) or vehicle, establishing a preconditioning model and a repopulation model, respectively. The mice underwent longitudinal PET/CT and PET/MRI. Results: The preconditioning model indicated similar tumor growth based on MRI (44.5% ± 24.8%), 18F-FET PET (18.3% ± 11.3%), and 18F-DPA-714 PET (16% ± 19.04%) volume dynamics in all groups, suggesting that GAMMs are not involved in glioma initiation. The repopulation model showed significantly reduced 18F-DPA-714 uptake (-45.6% ± 18.4%), significantly reduced GAMM infiltration even after repopulation, and a significantly decreased tumor volume (-54.29% ± 8.6%) with repopulation as measured by MRI, supported by a significant reduction in 18F-FET uptake (-50.2% ± 5.3%). Conclusion: 18F-FET and 18F-DPA-714 PET/MRI allow noninvasive assessment of glioma growth under various regimens of CSF-1R therapy. CSF-1R-mediated modulation of GAMMs may be of high interest as therapy or cotherapy against glioma.


Brain Neoplasms , Glioma , Acetamides/metabolism , Amines/metabolism , Amino Acids/metabolism , Animals , Brain Neoplasms/metabolism , Fluorine Radioisotopes/metabolism , Glioma/diagnostic imaging , Glioma/drug therapy , Glioma/metabolism , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/metabolism , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Microglia/pathology , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Pyrimidines/metabolism , Pyrimidines/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism
12.
J Med Chem ; 64(18): 13373-13393, 2021 09 23.
Article En | MEDLINE | ID: mdl-34472337

Heme oxygenase-1 (HO-1) promotes heme catabolism exercising cytoprotective roles in normal and cancer cells. Herein, we report the design, synthesis, molecular modeling, and biological evaluation of novel HO-1 inhibitors. Specifically, an amide linker in the central spacer and an imidazole were fixed, and the hydrophobic moiety required by the pharmacophore was largely modified. In many tumors, overexpression of HO-1 correlates with poor prognosis and chemoresistance, suggesting the inhibition of HO-1 as a possible antitumor strategy. Accordingly, compounds 7i and 7l-p emerged for their potency against HO-1 and were investigated for their anticancer activity against prostate (DU145), lung (A549), and glioblastoma (U87MG, A172) cancer cells. The selected compounds showed the best activity toward U87MG cells. Compound 7l was further investigated for its in-cell enzymatic HO-1 activity, expression levels, and effects on cell invasion and vascular endothelial growth factor (VEGF) extracellular release. The obtained data suggest that 7l can reduce cell invasivity acting through modulation of HO-1 expression.


Acetamides/pharmacology , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Heme Oxygenase (Decyclizing)/antagonists & inhibitors , Heme Oxygenase-1/antagonists & inhibitors , Acetamides/chemical synthesis , Acetamides/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cell Proliferation , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase-1/metabolism , Humans , Male , Molecular Docking Simulation , Molecular Structure , Protein Binding , Rats, Sprague-Dawley , Structure-Activity Relationship
13.
ChemMedChem ; 16(19): 3071-3082, 2021 10 06.
Article En | MEDLINE | ID: mdl-34213063

The MT2 -selective melatonin receptor ligand UCM765 (N-(2-((3-methoxyphenyl)(phenyl)amino)ethyl)acetamide), showed interesting sleep inducing, analgesic and anxiolytic properties in rodents, but suffers from low water solubility and modest metabolic stability. To overcome these limitations, different strategies were investigated, including modification of metabolically liable sites, introduction of hydrophilic substituents and design of more basic derivatives. Thermodynamic solubility, microsomal stability and lipophilicity of new compounds were experimentally evaluated, together with their MT1 and MT2 binding affinities. Introduction of a m-hydroxymethyl substituent on the phenyl ring of UCM765 and replacement of the replacement of the N,N-diphenyl-amino scaffold with a N-methyl-N-phenyl-amino one led to highly soluble compounds with good microsomal stability and receptor binding affinity. Docking studies into the receptor crystal structure provided a rationale for their binding affinity. Pharmacokinetic characterization in rats highlighted higher plasma concentrations for the N-methyl-N-phenyl-amino derivative, consistent with its improved microsomal stability and makes this compound worthy of consideration for further pharmacological investigation.


Acetamides/chemistry , Acetamides/metabolism , Aniline Compounds/chemistry , Aniline Compounds/metabolism , Acetamides/pharmacokinetics , Aniline Compounds/pharmacokinetics , Animals , Humans , Ligands , Male , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Rats , Rats, Sprague-Dawley , Receptor, Melatonin, MT1/chemistry , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/chemistry , Receptor, Melatonin, MT2/metabolism , Solubility , Thermodynamics , Water/chemistry
14.
Cell Mol Gastroenterol Hepatol ; 12(3): 793-811, 2021.
Article En | MEDLINE | ID: mdl-34082111

BACKGROUND & AIMS: Aryl hydrocarbon receptor (AhR) is a liver-enriched xenobiotic receptor that plays important role in detoxification response in liver. This study aimed to investigate how AhR signaling may impact the pathogenesis of alcohol-related liver disease (ALD). METHODS: Chronic alcohol feeding animal studies were conducted with mouse models of hepatocyte-specific AhR knockout (AhRΔhep) and NAD(P)H quinone dehydrogenase 1 (NQO1) overexpression, and dietary supplementation of the AhR ligand indole-3-carbinol. Cell studies were conducted to define the causal role of AhR and NQO1 in regulation of redox balance and apoptosis. RESULTS: Chronic alcohol consumption induced AhR activation and nuclear enrichment of NQO1 in hepatocytes of both alcoholic hepatitis patients and ALD mice. AhR deficiency exacerbated alcohol-induced liver injury, along with reduction of NQO1. Consistently, in vitro studies demonstrated that NQO1 expression was dependent on AhR. However, alcohol-induced NQO1 nuclear translocation was triggered by decreased cellular oxidized nicotinamide adenine dinucleotide (NAD+)-to-NADH ratio, rather than by AhR activation. Furthermore, both in vitro and in vivo overexpression NQO1 prevented alcohol-induced hepatic NAD+ depletion, thereby enhancing activities of NAD+-dependent enzymes and reversing alcohol-induced liver injury. In addition, therapeutic targeting of AhR in the liver with dietary indole-3-carbinol supplementation efficiently reversed alcoholic liver injury by AhR-NQO1 signaling activation. CONCLUSIONS: This study demonstrated that AhR activation is a protective response to counteract alcohol-induced hepatic NAD+ depletion through induction of NQO1, and targeting the hepatic AhR-NQO1 pathway may serve as a novel therapeutic approach for ALD.


Basic Helix-Loop-Helix Transcription Factors/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Ethanol/adverse effects , NAD(P)H Dehydrogenase (Quinone)/metabolism , Oxidation-Reduction , Receptors, Aryl Hydrocarbon/metabolism , Acetamides/metabolism , Animals , Apoptosis , Biomarkers , Cells, Cultured , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury, Chronic/etiology , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Chemical and Drug Induced Liver Injury, Chronic/pathology , Disease Models, Animal , Disease Susceptibility , Gene Expression , Gene Knockdown Techniques , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Immunophenotyping , Mice , Organ Specificity , Oxidative Stress
15.
J Cereb Blood Flow Metab ; 41(11): 3069-3084, 2021 11.
Article En | MEDLINE | ID: mdl-34159823

The positron emission tomography (PET) radiotracer [11C]PBR28 has been increasingly used to image the translocator protein (TSPO) as a marker of neuroinflammation in a variety of brain disorders. Interrelatedly, similar clinical populations can also exhibit altered brain perfusion, as has been shown using arterial spin labelling in magnetic resonance imaging (MRI) studies. Hence, an unsolved debate has revolved around whether changes in perfusion could alter delivery, uptake, or washout of the radiotracer [11C]PBR28, and thereby influence outcome measures that affect interpretation of TSPO upregulation. In this simultaneous PET/MRI study, we demonstrate that [11C]PBR28 signal elevations in chronic low back pain patients are not accompanied, in the same regions, by increases in cerebral blood flow (CBF) compared to healthy controls, and that areas of marginal hypoperfusion are not accompanied by decreases in [11C]PBR28 signal. In non-human primates, we show that hypercapnia-induced increases in CBF during radiotracer delivery or washout do not alter [11C]PBR28 outcome measures. The combined results from two methodologically distinct experiments provide support from human data and direct experimental evidence from non-human primates that changes in CBF do not influence outcome measures reported by [11C]PBR28 PET imaging studies and corresponding interpretations of the biological meaning of TSPO upregulation.


Acetamides/pharmacokinetics , Brain Diseases/pathology , Cerebrovascular Circulation/genetics , Low Back Pain/diagnostic imaging , Neuroinflammatory Diseases/diagnostic imaging , Pyridines/pharmacokinetics , Acetamides/metabolism , Adult , Animals , Brain Diseases/metabolism , Carrier Proteins/metabolism , Case-Control Studies , Humans , Hypercapnia/metabolism , Kinetics , Low Back Pain/metabolism , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neuroinflammatory Diseases/metabolism , Outcome Assessment, Health Care , Perfusion , Positron-Emission Tomography , Primates , Pyridines/metabolism , Receptors, GABA/genetics , Spin Labels , Up-Regulation
16.
Bioorg Chem ; 114: 104979, 2021 09.
Article En | MEDLINE | ID: mdl-34140181

A series of aryl phenoxy methyl triazole conjugated with thiosemicarbazides were designed, synthesized, and evaluated for their tyrosinase inhibitory activities in the presence of l-dopa and l-tyrosine as substrates. All the compounds showed tyrosinase inhibition in the sub-micromolar concentration. Among the derivatives, compound 9j bearing benzyl displayed exceptionally high potency against tyrosinase with IC50 value of 0.11 µM and 0.17 µM in the presence of l-tyrosine and l-dopa as substrates which is significantly lower than that of kojic acid as the positive control with an IC50 value of 9.28 µM for l-tyrosine and 9.30 µM for l-dopa. According to Lineweaver-Burk plot, 9j demonstrated an uncompetitive type of inhibition in the kinetic assay. Also, in vitro antioxidant activities determined by DPPH assay recorded an IC50 value of 68.43 µM for 9i. The melanin content of 9j was determined on B16F10 melanoma human cells which demonstrated a significant reduction of the melanin content. Moreover, the binding energies corresponding to the same ligand as well as computer-aided drug-likeness and pharmacokinetic studies were also carried out. Compound 9j also possessed metal chelation potential correlated to its high anti-TYR activity.


Acetamides/pharmacology , Enzyme Inhibitors/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Semicarbazides/pharmacology , Skin Lightening Preparations/pharmacology , Triazoles/pharmacology , Acetamides/chemical synthesis , Acetamides/metabolism , Acetamides/pharmacokinetics , Cell Line, Tumor , Chelating Agents/chemical synthesis , Chelating Agents/metabolism , Chelating Agents/pharmacokinetics , Chelating Agents/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Humans , Melanins/metabolism , Molecular Docking Simulation , Molecular Structure , Monophenol Monooxygenase/metabolism , Protein Binding , Semicarbazides/chemical synthesis , Semicarbazides/metabolism , Semicarbazides/pharmacokinetics , Skin Lightening Preparations/chemical synthesis , Skin Lightening Preparations/metabolism , Skin Lightening Preparations/pharmacokinetics , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/metabolism , Triazoles/pharmacokinetics
17.
J Med Chem ; 64(12): 8127-8141, 2021 06 24.
Article En | MEDLINE | ID: mdl-34081857

Klisyri (KX01) is a dual tubulin/Src protein inhibitor that has shown potential therapeutic effects in several tumor models. However, a phase II clinical trial in patients with bone-metastatic castration-resistant prostate cancer was halted because of lack of efficacy. We previously reported that KX01 binds to the colchicine site of ß-tubulin and its morpholine group lies close to α-tubulin's surface. Thus, we hypothesized that enhancing the interaction of KX01 with α-tubulin could increase tubulin inhibition and synthesized a series of KX01 derivatives directed by docking studies. Among these derivatives, 8a exhibited more than 10-fold antiproliferation activity in several tumor cells than KX01 and significantly improved in vivo antitumor effects. The X-ray crystal structure suggested that 8a both bound to the colchicine site and extended into the interior of α-tubulin to form potent interactions, presenting a novel binding mode. A potential clinical candidate for cancer therapy was identified in this study.


Acetamides/pharmacology , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Tubulin Modulators/pharmacology , src-Family Kinases/antagonists & inhibitors , Acetamides/chemical synthesis , Acetamides/metabolism , Acetamides/pharmacokinetics , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Cattle , Cell Line, Tumor , Chickens , Crystallography, X-Ray , Drug Design , Female , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Morpholines , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Pyridines/chemical synthesis , Pyridines/metabolism , Pyridines/pharmacokinetics , Rats, Sprague-Dawley , Signal Transduction/drug effects , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/metabolism , Tubulin Modulators/pharmacokinetics
18.
Int J Mol Med ; 47(6)2021 Jun.
Article En | MEDLINE | ID: mdl-33907828

The toxicity of chloroacetamide herbicide in embryo development remains unclear. Acetochlor (AC) is a chloroacetamide that metabolizes into 2­ethyl­6­methyl-2-chloroacetanilide (CMEPA) and 6­ethyl­o­toluidine (MEA). The present study determined the potential effect of AC and its metabolites on embryo development. Both HepG2 cells and zebrafish embryos were exposed to AC, CMEPA and MEA in the presence or absence of co­treatment with anti­reactive oxygen species (ROS) reagent N­acetylcysteine. The generation of ROS, levels of superoxide dismutase (SOD) and glutathione (GSH) in HepG2 cells and lactate dehydrogenase (LDH) leakage from HepG2 cells were investigated. The effects of AC, CMEPA and MEA on DNA breakage, MAPK/ERK pathway activity, viability and apoptosis of HepG2 cells were examined by comet assay, western blotting, MTT assay and flow cytometry, respectively. Levels of LDH, SOD and GSH in zebrafish embryos exposed to AC, CMEPA and MEA were measured. The hatching and survival rates of zebrafish embryos exposed to AC, CMEPA and MEA, were determined, and apoptosis of hatched fish was investigated using acridine orange staining. The present data showed AC, CMEPA and MEA induced generation of ROS and decreased levels of SOD and GSH in HepG2 cells, which in turn promoted DNA breakage and LDH leakage from cells, ultimately inhibiting cell viability and inducing apoptosis, as well as phosphorylation of JNK and P38. However, co­treatment with N­acetylcysteine alleviated the pro­apoptosis effect of AC and its metabolites. Moreover, exposure to AC, CMEPA and MEA lead to toxicity of zebrafish embryos with decreased SOD and GSH and increased LDH levels and cell apoptosis, ultimately decreasing the hatching and survival rates of zebrafish, all of which was attenuated by treatment with N­acetylcysteine. Therefore, AC and its metabolites (CMEPA and MEA) showed cytotoxicity and embryo development toxicity.


Acetamides/metabolism , Acetamides/toxicity , Herbicides/metabolism , Herbicides/toxicity , Metabolome , Mutagenicity Tests , Acetanilides/toxicity , Animals , Apoptosis/drug effects , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Glutathione/metabolism , Hep G2 Cells , Humans , L-Lactate Dehydrogenase/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Survival Analysis , Toluidines/toxicity , Zebrafish/embryology
19.
Microb Cell Fact ; 20(1): 61, 2021 Mar 04.
Article En | MEDLINE | ID: mdl-33663497

BACKGROUND: The chloroacetamide herbicides pretilachlor is an emerging pollutant. Due to the large amount of use, its presence in the environment threatens human health. However, the molecular mechanism of pretilachlor degradation remains unknown. RESULTS: Now, Rhodococcus sp. B2 was isolated from rice field and shown to degrade pretilachlor. The maximum pretilachlor degradation efficiency (86.1%) was observed at a culture time of 5 d, an initial substrate concentration 50 mg/L, pH 6.98, and 30.1 °C. One novel metabolite N-hydroxyethyl-2-chloro-N-(2, 6-diethyl-phenyl)-acetamide was identified by gas chromatography-mass spectrometry (GC-MS). Draft genome comparison demonstrated that a 32,147-bp DNA fragment, harboring gene cluster (EthRABCDB2), was absent from the mutant strain TB2 which could not degrade pretilachlor. The Eth gene cluster, encodes an AraC/XylS family transcriptional regulator (EthRB2), a ferredoxin reductase (EthAB2), a cytochrome P450 monooxygenase (EthBB2), a ferredoxin (EthCB2) and a 10-kDa protein of unknown function (EthDB2). Complementation with EthABCDB2 and EthABDB2, but not EthABCB2 in strain TB2 restored its ability to degrade chloroacetamide herbicides. Subsequently, codon optimization of EthABCDB2 was performed, after which the optimized components were separately expressed in Escherichia coli, and purified using Ni-affinity chromatography. A mixture of EthABCDB2 or EthABDB2 but not EthABCB2 catalyzed the N-dealkoxymethylation of alachlor, acetochlor, butachlor, and propisochlor and O-dealkylation of pretilachlor, revealing that EthDB2 acted as a ferredoxin in strain B2. EthABDB2 displayed maximal activity at 30 °C and pH 7.5. CONCLUSIONS: This is the first report of a P450 family oxygenase catalyzing the O-dealkylation and N-dealkoxymethylation of pretilachlor and propisochlor, respectively. And the results of the present study provide a microbial resource for the remediation of chloroacetamide herbicides-contaminated sites.


Acetamides/metabolism , Acetanilides/metabolism , Cytochrome P-450 Enzyme System/metabolism , Herbicides/metabolism , Multifunctional Enzymes/metabolism , Rhodococcus/enzymology , Biodegradation, Environmental , Cytochrome P-450 Enzyme System/genetics , Dealkylation , Escherichia coli/genetics , Ferredoxins/metabolism , Genes, Bacterial , Genome, Bacterial , Kinetics , Multifunctional Enzymes/genetics , Multigene Family , Mutation , Open Reading Frames , Rhodococcus/classification , Rhodococcus/genetics , Rhodococcus/isolation & purification
20.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article En | MEDLINE | ID: mdl-33649224

A number of plant-associated proteobacteria have LuxR family transcription factors that we refer to as PipR subfamily members. PipR proteins play roles in interactions between bacteria and their plant hosts, and some are important for bacterial virulence of plants. We identified an ethanolamine derivative, N-(2-hydroxyethyl)-2-(2-hydroxyethylamino) acetamide (HEHEAA), as a potent effector of PipR-mediated gene regulation in the plant endophyte Pseudomonas GM79. HEHEAA-dependent PipR activity requires an ATP-binding cassette-type active transport system, and the periplasmic substrate-binding protein (SBP) of that system binds HEHEAA. To begin to understand the molecular basis of PipR system responses to plant factors we crystallized a HEHEAA-responsive SBP in the free- and HEHEAA-bound forms. The SBP, which is similar to peptide-binding SBPs, was in a closed conformation. A narrow cavity at the interface of its two lobes is wide enough to bind HEHEAA, but it cannot accommodate peptides with side chains. The polar atoms of HEHEAA are recognized by hydrogen-bonding interactions, and additional SBP residues contribute to the binding site. This binding mode was confirmed by a structure-based mutational analysis. We also show that a closely related SBP from the plant pathogen Pseudomonas syringae pv tomato DC3000 does not recognize HEHEAA. However, a single amino acid substitution in the presumed effector-binding pocket of the P. syringae SBP converted it to a weak HEHEAA-binding protein. The P. syringae PipR depends on a plant effector for activity, and our findings imply that different PipR-associated SBPs bind different effectors.


Acetamides/chemistry , Bacterial Proteins/chemistry , Pseudomonas syringae/chemistry , Acetamides/metabolism , Bacterial Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Pseudomonas syringae/metabolism
...